Interactions of novel morpholine and hexamethylene derivatives of anthracycline antibiotics with DNA.
نویسندگان
چکیده
Doxorubicin (DOX), daunorubicin (DRB), epidoxorubicin (EDOX) and their analogues with a 3'-NH2 group in daunosamine form a covalent bond with a 2-NH2 group of guanine via a methylene group from formaldehyde (CH2O). It is assumed that a Schiff base type intermediate is formed between CH2O and the 3'-NH2 group in the reaction. This reaction is supposed to occur in the cell. New analogues of anthracyclines with formamidine functionality bound to C-3' of daunosamine and containing the bulky morpholine (DRBM, DOXM and EDOXM) or hexamethyleneimine rings attached are studied in our laboratory. These substituents decrease the association of the drugs to DNA and potentially hinder the formation of Schiff base-intermediates. Our experiments indicate that the formation of the covalent complexes by DRB, DOX and EDOX under these conditions is confirmed by a high enhancement (17-40x) of the inhibition of overall RNA synthesis by E. coli RNA polymerase on T7 DNA. DRBM and DOXM exhibit a lower enhancement of the inhibition by CH2O (7-13x). The other analogues show a 1.6-3x increase of inhibition. Hence, their covalent binding is lower than that of the parent compounds. These conclusions are confirmed by spectrophotometric estimations following removal of non-covalently associated drugs. Electrophoretic analysis of drug-DNA complexes formed in the presence of CH2O indicates that DRBM and DOXM as their parent compounds induce labile cross-links in DNA. Comparison of the results obtained at the subcellular level with cytotoxicity estimations indicates that there is a correlation between cytotoxicity of the anthracyclines on L1210 cells and transcriptional template activity of drug-DNA complexes formed in the presence of CH2O (r = 0.64; n = 9). These data confirm a notion that covalent attachment of anthracyclines to DNA is an essential event leading to cytotoxicity.
منابع مشابه
Evaluation of Apoptosis in Multipotent Hematopoietic Cells of Bone Marrow by Anthracycline Antibiotics
Anthracycline antibiotics are potent anticancer drugs widely used in the treatment of solidtumors and hematological malignancies. Because of their extensive clinical use and their toxiceffect on normal cells, in the present study the effect of these drugs on multipotent hematopoieticbone marrow cells was investigated employing, viability tests, PARP cleavage, Hoechst 33258staining, DNA fragment...
متن کاملEvaluation of Apoptosis in Multipotent Hematopoietic Cells of Bone Marrow by Anthracycline Antibiotics
Anthracycline antibiotics are potent anticancer drugs widely used in the treatment of solidtumors and hematological malignancies. Because of their extensive clinical use and their toxiceffect on normal cells, in the present study the effect of these drugs on multipotent hematopoieticbone marrow cells was investigated employing, viability tests, PARP cleavage, Hoechst 33258staining, DNA fragment...
متن کاملA simple model for predicting the free energy of binding between anthracycline antibiotics and DNA.
A theoretical model for predicting the free energy of binding between anthracycline antibiotics and DNA was developed using the electron density functional (DFT) and molecular mechanics (MM) methods. Partial DFT-ESP charges were used in calculating the MM binding energies for complexes formed between anthracycline antibiotics and oligodeoxynucleotides. These energies were then compared with exp...
متن کاملExperimental and In-Silico Investigation of Anti-Microbial Activity of 1-Chloro-2-Isocyanatoethane Derivatives of Thiomorpholine, Piperazine and Morpholine
The Antibiogram properties of 1-chloro-2-isocyanatoethane derivatives of thiomorpholine (CTC), piperazine (CPC) and morpholine (CMC) were evaluated by the approved agar well diffusion, the minimum inhibitory concentration (MIC) and in silico techniques. A total of fourteen microbial cultures consisting of ten bacteria and four yeast strains were used in the biological study while affinity of th...
متن کاملElectrochemical sensing of DNA-adriamycin interactions.
Adriamycin, a cancerostatic anthracycline antibiotic, causes considerable death of tumour cells, together with the induction of breaks in DNA single and double strands. The interaction of this compound with DNA was investigated using an electrochemical DNA-biosensor. Adriamycin intercalation in DNA disrupts the double helix and the detection of guanine and 8-oxoguanine could mimic one possible ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Zeitschrift fur Naturforschung. C, Journal of biosciences
دوره 59 9-10 شماره
صفحات -
تاریخ انتشار 2004